
N94- 2_ 411

1993

NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

FINITE ELEMENT BASED ELECTRIC MOTOR DESIGN OPTIMIZATION

Prepared by:

Academic Rank:

Institution and

Department:

MSFC Colleague(s):

C. Warren Campbell, Ph.D., P. E.

Associate Professor

The University of Alabama in Huntsville

Department of Civil and Environmental Engineering

Charles S. Cornelius

Rae Ann Weir

NASA/MSFC:

Laboratory:
Division:

Branch:

Propulsion Lab

Component Development Division

Control Mechanisms and Propellant

Delivery Branch

Vl

I. INTRODUCTION

The purpose of this effort was to develop a finite element

code for the analysis and design of permanent magnet electric
motors. These motors would drive electromechanical actuators in

advanced rocket engines. The actuators would control fuel
valves and thrust vector control systems. Refurbishing the

hydraulic systems of the Space Shuttle after each flight is

costly and time consuming. Electromechanical actuators could
replace hydraulics, improve system reliability, and reduce down
time.

The organization of the code is shown in Figure i.

motor preprocessor is a routine that does the following:

The

I)

2)

3)

4)

Receives data on the motor geometry, materials,

windings, and currents
Generates the meshes and elements for the motor for

different rotor positions
Renumbers the nodes for minimal storage using the

minimum degree ordering algorithm

Dynamically allocates storage for coefficient arrays

for the finite element analysis

The finite element model calculates the magnetic vector

potential and stores the results in a file that can be accessed

by the postprocessor.

The postprocessor will do the following:

I)
2)
3)

Calculate flux densities and field intensities

Calculate torques and back emfs for the motor
Plot the results

The optimizer will take torques and information from the

postprocessor and calculate a general objective function with

internal penalty function constraints. Constraints could

include magnitude of current densities, motor weight and

volume, and cogging torque. Based on previous values of the

objective function, the optimizer will select motor geometry for

the next iteration. Optimization will continue until the motor

design is optimized.

The optimization will begin with an initial motor design

and will proceed toward an improved design. Care must be taken

in the design of the mesh. Sometimes in finite element

structural optimization, a mesh is generated which gives an
accurate solution to the initial design, but as optimization

proceeds, the mesh becomes too coarse for an accurate solution.
Then the "optimized" design is invalid.

Clearly, the code will be very long running. Consider using

v VI-i

Z
0
m

.<
N
m

Z
<
0

0
LU

0
0

0

LU
IJ.

UJ
0
I.--

rr
ILl
N
m

=S
m

¢1.
0

=Sw

0
rr
I1.

uJI-
>0

Q.

I.I...i
0
(n

uJuJ

:SOZ

:Sa.

i

QP

U

c_

0
(J

0

LLJ
LL

v--I

(1)

°r--

i,

Vl-2

cogging as a constraint. For each value of the objective
function the finite element code must find several solutions for

different positions of the rotor.

The finite element code developed in this effort was based

on the models in Silvester and Ferrari (3). The sparse matrix

algorithms were taken from George and Liu (1). The optimizer

will be an adaptation of code available from Numerical Recipes

in C by Press, et al.(2).

II. APPROACH

The objective of this effort was to develop a finite

element code with optimization that could run on a 386- or 486-

class machine with up to 15,000 nodes in a two-dimensional

problem. Since motors are very long compared to airgap widths
and since we will not use rotor or stator skewing of magnets or

teeth, the problem can be assumed to be two-dimensional.

Also, these goals should be achievable without making users buy
thousands of dollars of software.

Because of the ambitious goals for this project, as many of

the routines as possible were based on existing code. At the

beginning, I did not realize that the code in Silvester and

Ferrari (3) was learning code in which coefficient arrays were
dimensioned to the maximum number of nodes, that is A(maxnod,

maxnod). For a 15,000 node problem (the goal for this effort),

the coefficient array alone would require 15,000 by 15,000 = 225

Megawords of storage! For 4-byte words, this is a gigabyte of

storage. Clearly, sparse matrix methods are required.

The need for sparse matrix methods significantly slowed the

progress of the effort. Even though George and Liu is an
excellent reference for solutions of finite element problems and

though it has Fortran subroutines in the text, progress was

extremely slow. This is because the routines in the text are

spaghetti code that are extremely hard to debug andunderstand.
The code uses variables that perform several functions and have

values that change in mysterious ways at different places in the

program. For these reasons, direct application of the routines
would make the code difficult to understand, debug, and

maintain. For these reasons, algorithms presented in George and
Liu were used to write new code that was understandable,

structured, and maintainable.

Borland C and C++ was chosen as the development language

for many good reasons. The Borland package is

inexpensive(~$300), well documented, and well written. It

permits tracing line by line through the code viewing values of

any variable at any point. It also allows the setting of

breakpoints. The code can be executed to the breakpoints where

v VI-3

each variable of interest can be examined. This capability

minimizes debugging effort. C was chosen because of its power.

Desirable features include dynamic memory allocation, ability to

implement data structures easily while writing readable code,

and accessibility of computer graphics capabilities. Dynamic

memory allocation means that large arrays can be created as

needed, used, and then the memory deallocated for other uses.

In C this is done cleanly without impact to any of the desirable

features of the code. The same thing can be done in Fortran
using equivalence statements, but the process can cause

unexpected and untraceable errors in the code.

A strategy was found to be very useful for code

development. The first step was to take simple test problems

and use Mathcad (a mathematical spreadsheet easy to use and

understand) to calculate values of the variables at every point
in the execution of a program. With the line-by-line tracing
ability of Borland C, values of the variables in the code and

those calculated with Mathcad could be compared.

I also adapted an array dynamic allocation strategy from
Press, et al. (3). C normally dimensions arrays from 0 to n -

1, where n is the array dimension. By the Numerical Recipes
approach, arrays can be allocated from nlow to nhighwhere nlow

and nhighare any values with nhigh > nlow. This is very useful

in translating Fortran code with arrays dimensioned from 1 to n.

III. SUMMARY

In the first year of this task, work was done on the

preprocessor and on the finite element solver. Next year the

goal will be to add a nonlinear equation solver, a motor

preprocessor, post processor, and optimizer.

IV. ACKNOWLEDGEMENT

Thanks are due to Charlie Cornelius and Rae Ann Weir whose

support and encouragement were invaluable.

V. REFERENCES

1. George, Alan, and Liu, Joseph W., Computer Solution of

Larue Sparse PositiveDefinite Systems, Prentice-Hall, Englewood
cliffs, NJ, 1981.

2. Press, William H., et al., Numerical Recipes

Cambridge University Press, New York, 1990.

i_ C,

3. Silvester, P. P., and Ferrari, R. L., Finite Elements for

Electrical Enuineers , 2nd Edition, Cambridge University Press,
New York, 1990.

VI-4 _

